import cv2 import mediapipe as mp from DataStreamModule import DataStreamModule from IHPEModule import IHPEModule # initialize mediapipe drawing utilities and pose models mp_drawing = mp.solutions.drawing_utils mp_pose = mp.solutions.pose # This class implements Human Pose Estimation (HPE) using the mediapipe library class HPEModule(IHPEModule): # This method starts HPE using a camera specified by its name def startHPEwithCamera(self, camera_name): # initialize data stream and camera object data_stream = DataStreamModule() cap = data_stream.get_camera_stream(camera_name) # set the window name using the camera name window_name = f"Pose Estimation on Camera {camera_name}" # start pose detection with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose: while True: # get the next frame from the camera frame = next(cap) # Recolor image to RGB image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image.flags.writeable = False # Make detection results = pose.process(image) # Recolor back to BGR image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # Extract landmarks try: landmarks = results.pose_landmarks.landmark print(landmarks) except: pass # Render detections mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS, mp_drawing.DrawingSpec(color=(245, 117, 66), thickness=2, circle_radius=2), mp_drawing.DrawingSpec(color=(245, 66, 230), thickness=2, circle_radius=2) ) cv2.imshow(window_name, image) keyCode = cv2.waitKey(1) if cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) < 1: break # destroy the window after exiting the loop #cv2.destroyWindow(window_name)